Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 301: 12

Answer

(a) $f$ is decreasing on the intervals $(-\infty, -1)\cup(1,\infty)$ $f$ is increasing on the interval $(-1,1)$ (b) The local maximum is $f(1) = \frac{1}{2}$ The local minimum is $f(-1) = -\frac{1}{2}$ (c) The graph is concave down on these intervals: $(-\infty, -\sqrt{3})\cup (0, \sqrt{3})$ The graph is concave up on these intervals: $(-\sqrt{3}, 0)\cup (\sqrt{3}, \infty)$ The points of inflection are $(-\sqrt{3},-\frac{\sqrt{3}}{4}), (0,0),$ and $(\sqrt{3},\frac{\sqrt{3}}{4})$

Work Step by Step

(a) $f(x) = \frac{x}{x^2+1}$ We can find the points where $f'(x) = 0$: $f'(x) = \frac{(x^2+1)-(x)(2x)}{(x^2+1)^2}$ $f'(x) = \frac{1-x^2}{(x^2+1)^2} = 0$ $1-x^2 = 0$ $x^2 = 1$ $x = \pm 1$ When $x \lt -1$ and $x \gt 1,$ then $f'(x) \lt 0$ $f$ is decreasing on the intervals $(-\infty, -1)\cup(1,\infty)$ When $-1 \lt x \lt 1,$ then $f'(x) \gt 0$ $f$ is increasing on the interval $(-1,1)$ (b) $f(-1) = \frac{(-1)}{(-1)^2+1} = -\frac{1}{2}$ $f(1) = \frac{(1)}{(1)^2+1} = \frac{1}{2}$ The local maximum is $f(1) = \frac{1}{2}$ The local minimum is $f(-1) = -\frac{1}{2}$ (c) We can find the points where $f''(x) = 0$: $f''(x) = \frac{(-2x)(x^2+1)^2-(1-x^2)(2)(x^2+1)(2x)}{(x^2+1)^4}$ $f''(x) = \frac{(-2x)(x^4+2x^2+1)-(2-2x^2)(2x^3+2x)}{(x^2+1)^4}$ $f''(x) = \frac{-2x^5-4x^3-2x-4x^3-4x+4x^5+4x^3}{(x^2+1)^4}$ $f''(x) = \frac{2x^5-4x^3-6x}{(x^2+1)^4} = 0$ $2x^5-4x^3-6x = 0$ $2x~(x^4-2x^2-3) = 0$ $2x~(x^2-3)(x^2+1) = 0$ $x = 0~~$ or $~~x = \pm \sqrt{3}$ The graph is concave down when $f''(x) \lt 0$ The graph is concave down on these intervals: $(-\infty, -\sqrt{3})\cup (0, \sqrt{3})$ The graph is concave up when $f''(x) \gt 0$ The graph is concave up on these intervals: $(-\sqrt{3}, 0)\cup (\sqrt{3}, \infty)$ $f(-\sqrt{3}) = \frac{-\sqrt{3}}{(-\sqrt{3})^2+1} = -\frac{\sqrt{3}}{4}$ $f(0) = \frac{0}{(0)^2+1} = 0$ $f(\sqrt{3}) = \frac{\sqrt{3}}{(\sqrt{3})^2+1} = \frac{\sqrt{3}}{4}$ The points of inflection are $(-\sqrt{3},-\frac{\sqrt{3}}{4}), (0,0),$ and $(\sqrt{3},\frac{\sqrt{3}}{4})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.