Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 301: 16

Answer

(a) $f$ is decreasing on the interval $(0, \frac{1}{\sqrt{e}})$ $f$ is increasing on the interval $(\frac{1}{\sqrt{e}},\infty)$ (b) The local minimum is $f(\frac{1}{\sqrt{e}}) = -\frac{1}{2e}$ (c) The graph is concave down on this interval: $(0, \frac{1}{e^{3/2}})$ The graph is concave up on this interval: $(\frac{1}{e^{3/2}}~, \infty)$ The point of inflection is $(\frac{1}{e^{3/2}}~,~-\frac{3}{2e^3})$

Work Step by Step

(a) $f(x) = x^2~ln~x$ Note that this function is defined on the interval $(0, \infty)$ We can find the points where $f'(x) = 0$: $f'(x) = 2x~ln~x+(x^2)(\frac{1}{x})$ $f'(x) = 2x~ln~x+x = 0$ $x~(2~ln~x+1) = 0$ $x=0$ or $ln~x = -\frac{1}{2}$ $x = 0, e^{-1/2}$ $x = 0, \frac{1}{\sqrt{e}}$ When $0 \lt x \lt \frac{1}{\sqrt{e}}$ then $f'(x) \lt 0$ $f$ is decreasing on the interval $(0, \frac{1}{\sqrt{e}})$ When $\frac{1}{\sqrt{e}} \lt x$ then $f'(x) \gt 0$ $f$ is increasing on the interval $(\frac{1}{\sqrt{e}},\infty)$ (b) $f(\frac{1}{\sqrt{e}}) = (\frac{1}{\sqrt{e}})^2~ln(\frac{1}{\sqrt{e}})$ $f(\frac{1}{\sqrt{e}}) = (\frac{1}{e})~ln(e^{-1/2})$ $f(\frac{1}{\sqrt{e}}) = (\frac{1}{e})~(-\frac{1}{2})$ $f(\frac{1}{\sqrt{e}}) = -\frac{1}{2e}$ The local minimum is $f(\frac{1}{\sqrt{e}}) = -\frac{1}{2e}$ (c) We can find the points where $f''(x) = 0$: $f''(x) = 2~ln~x+(2x)(\frac{1}{x})+1$ $f''(x) = 2~ln~x+2+1$ $f''(x) = 2~ln~x+3 = 0$ $ln~x = -\frac{3}{2}$ $x = e^{-3/2}$ $x = \frac{1}{e^{3/2}}$ The graph is concave down when $f''(x) \lt 0$ The graph is concave down on this interval: $(0, \frac{1}{e^{3/2}})$ The graph is concave up when $f''(x) \gt 0$ The graph is concave up on this interval: $(\frac{1}{e^{3/2}}~, \infty)$ $f(\frac{1}{e^{3/2}}) = (\frac{1}{e^{3/2}})^2~ln(\frac{1}{e^{3/2}})$ $f(\frac{1}{e^{3/2}}) = (\frac{1}{e^3})~ln(e^{-3/2})$ $f(\frac{1}{e^{3/2}}) = (\frac{1}{e^3})~(-\frac{3}{2})$ $f(\frac{1}{e^{3/2}}) = -\frac{3}{2e^3}$ The point of inflection is $(\frac{1}{e^{3/2}}~,~-\frac{3}{2e^3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.