Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Review - Exercises - Page 360: 54

Answer

$V = \frac{32\pi R^{3}}{81}$

Work Step by Step

Using the sketch, we can see that the radius of the cone $r$ , $x$, and $R$ form a right triangle. Therefore $x^{2}$ + $r^{2}$ = $R^{2}$ We can solve the equation for $r^2$ $r^{2}$ = $R^{2}- x^{2}$. The height of the cone is $h = x + R$ We know that the volume of a cone is $V = \frac{1}{3}\pi r^{2}h$. So if we plug the 2 values in we get volume in terms of an unknown, $x$ and a constant $R$. $V = \frac{1}{3}\pi r^{2}h$ $V = \frac{1}{3}\pi (R^{2}$ - $x^{2})(x + R)$ Use the product rule to find $\frac{dV}{dx}$ $\frac{dV}{dx} = \frac{1}{3}\pi ((-2x)(R+x) + (R^{2}$ - $x^{2}))$ $\frac{dV}{dx} = \frac{1}{3}\pi (-2xR-2x^2+R^2-x^2)$ Set $\frac{dV}{dx} = 0$ , to find maximum volume $0 = \frac{1}{3}\pi (-2xR-2x^2+R^2-x^2)$ $0 = -3x^2 - 2xR + R^2$ $0 = 3x^2 + 2xR - R^2$ $0 = (3x-R)(x+R)$ $x = \frac{R}{3}$ and $x =-R$ Using sign analysis we find that $x =-R$ is a local min of $\frac{dV}{dx}$ and $x = \frac{R}{3}$ is a local max. Alternatively, we can reason: if $x = -R$, and $h = x + R$ $h = -R + R$ $h = 0$ $V = \frac{1}{3}\pi r^{2}(0)$ $V = 0$. We can plug $x$ back into the original equations to find $h$ and $r$. $h = R+x$ $h = R + (\frac{R}{3})$ $h= \frac{4}{3}R$ $r^2 = R^2 - x^2$ $r^2 = R^2 - (\frac{R}{3})^2$ $r^2 = \frac{8}{9}R^2$ Plug $r$ and $h$ back in to find $V$ $V = \frac{1}{3}\pi r^2h$ $V = \frac{1}{3}\pi (\frac{8}{9}R^2)(\frac{4}{3}R)$ $V = \frac{32\pi R^{3}}{81}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.