Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Review - Exercises: 22

Answer

The asymptotes are 1) Line $y=-1$ is the horizontal asymptote when $x\to-\infty$; 2) Line $y=1$ is the horizontal asymptote when $x\to+\infty$.

Work Step by Step

From the graph we suspect that 1) Line $y=-1$ is the horizontal asymptote when $x\to-\infty$; 2) Line $y=1$ is the horizontal asymptote when $x\to+\infty$. Let us prove this. 1) $$\lim_{x\to-\infty}(\sqrt{x^2+x+1}-\sqrt{x^2-x})=\lim_{x\to-\infty}(\sqrt{x^2+x+1}-\sqrt{x^2-x})\cdot\frac{\sqrt{x^2+x+1}+\sqrt{x^2-x}}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to-\infty}\frac{\sqrt{x^2+x+1}^2-\sqrt{x^2-x}^2}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to-\infty}\frac{x^2+x+1-x^2+x}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to-\infty}\frac{2x+1}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to-\infty}\frac{|x|\left(-2+\frac{1}{|x|}\right)}{|x|\left(\sqrt{1-\frac{1}{|x|}+\frac{1}{|x|^2}}+\sqrt{1+\frac{1}{|x|}}\right)}=\lim_{x\to-\infty}\frac{\left(-2+\frac{1}{|x|}\right)}{\left(\sqrt{1-\frac{1}{|x|}+\frac{1}{|x|^2}}+\sqrt{1+\frac{1}{|x|}}\right)}=\left[\frac{-2+0}{\sqrt{1-0+0}+\sqrt{1+0}}\right]=-1,$$ which we needed to show. 2) $$\lim_{x\to+\infty}(\sqrt{x^2+x+1}-\sqrt{x^2-x})=\lim_{x\to+\infty}(\sqrt{x^2+x+1}-\sqrt{x^2-x})\cdot\frac{\sqrt{x^2+x+1}+\sqrt{x^2-x}}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to+\infty}\frac{\sqrt{x^2+x+1}^2-\sqrt{x^2-x}^2}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to+\infty}\frac{x^2+x+1-x^2+x}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to+\infty}\frac{2x+1}{\sqrt{x^2+x+1}+\sqrt{x^2-x}}=\lim_{x\to+\infty}\frac{x\left(2+\frac{1}{x}\right)}{x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+\sqrt{1-\frac{1}{x}}\right)}=\lim_{x\to+\infty}\frac{\left(2+\frac{1}{x}\right)}{\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+\sqrt{1-\frac{1}{|x}}\right)}=\left[\frac{2+0}{\sqrt{1+0+0}+\sqrt{1-0}}\right]=1,$$ which we needed to show.
Small 1511105319
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.