Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.4 Trigonometric Substitutions - 7.4 Exercises: 32

Answer

\[ = \frac{9}{4}{\sin ^{ - 1}}\,\left( {\frac{{2x}}{3}} \right) + \frac{1}{2}x\sqrt {9 - 4{x^2}} + C\]

Work Step by Step

\[\begin{gathered} \int_{}^{} {\sqrt {9 - 4{x^2}} dx} \hfill \\ \hfill \\ rewrite \hfill \\ \hfill \\ = \int_{}^{} {\sqrt {\,{{\left( 3 \right)}^2} - \,{{\left( {2x} \right)}^2}} dx} \hfill \\ \hfill \\ the\,\,\,integral\,has\,\,the\,\,form\,\,{x^2} - {a^2}\,\, \hfill \\ \hfill \\ 2x = 3\sin \theta \,\,\,\,\,\,\, \to \,\,\,x = \frac{3}{2}\sin \theta \,\, \to \,dx = \frac{3}{2}\cos \theta d\theta \,\, \hfill \\ and\,\,\,\sqrt {\,{{\left( 3 \right)}^2} - \,\left( {2{x^2}} \right)} = 3\cos \theta \hfill \\ \hfill \\ apply\,\,the\,\,substitution \hfill \\ \hfill \\ = \int_{}^{} {\,\left( {3\cos \theta } \right)\,\left( {\frac{3}{2}} \right)\cos \theta d\theta \,} = \frac{9}{2}\int_{}^{} {{{\cos }^2}\theta d\theta } \hfill \\ \hfill \\ use\,trigonometric\,\,identity{\text{ }}{\cos ^2}\theta = \frac{{1 + \cos \theta }}{2} \hfill \\ \hfill \\ = \frac{9}{2}\int_{}^{} {\,\left( {\frac{{1 + \cos 2\theta }}{2}} \right)d\theta } \hfill \\ \hfill \\ integrate \hfill \\ \hfill \\ = \frac{9}{4}\theta + \frac{9}{8}\sin 2\theta + C \hfill \\ \hfill \\ = \frac{9}{4}\theta + \frac{9}{4}\cos \theta \sin \theta + C \hfill \\ \hfill \\ substitute\,\,for\,\,\sin \theta {\text{ and cos}}\theta \hfill \\ \hfill \\ = \frac{9}{4}{\sin ^{ - 1}}\,\left( {\frac{{2x}}{3}} \right) + \frac{1}{2}x\sqrt {9 - 4{x^2}} + C \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.