Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.2 Regions Between Curves - 6.2 Exercises - Page 418: 42

Answer

$$A = 2\sqrt 3 - \frac{{2\pi }}{3}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = 2{\text{ and }}y = \frac{1}{{\sqrt {1 - {x^2}} }} \cr & 2 = \frac{1}{{\sqrt {1 - {x^2}} }} \cr & 4 = \frac{1}{{1 - {x^2}}} \cr & 4 - 4{x^2} = 1 \cr & 4{x^2} - 3 = 0 \cr & x = \pm \frac{{\sqrt 3 }}{2} \cr & 2 \geqslant \frac{1}{{\sqrt {1 - {x^2}} }}{\text{ on the interval }}\left[ { - \frac{{\sqrt 3 }}{2},\frac{{\sqrt 3 }}{2}} \right] \cr & {\text{The area is given by}} \cr & A = \int_{ - \sqrt 3 /2}^{\sqrt 3 /2} {\left( {2 - \frac{1}{{\sqrt {1 - {x^2}} }}} \right)} dx \cr & {\text{Integrating}} \cr & A = \left[ {2x - {{\sin }^{ - 1}}x} \right]_{ - \sqrt 3 /2}^{\sqrt 3 /2} \cr & A = 2\left( {\frac{{\sqrt 3 }}{2}} \right) - {\sin ^{ - 1}}\left( {\frac{{\sqrt 3 }}{2}} \right) - 2\left( { - \frac{{\sqrt 3 }}{2}} \right) + {\sin ^{ - 1}}\left( { - \frac{{\sqrt 3 }}{2}} \right) \cr & {\text{Simplifying}} \cr & A = \sqrt 3 - \frac{\pi }{3} + \sqrt 3 - \frac{\pi }{3} \cr & A = 2\sqrt 3 - \frac{{2\pi }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.