Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.1 Integration by Parts - 7.1 Exercises - Page 516: 29

Answer

$\displaystyle -\frac{π}{4} ≈ -0.785398$

Work Step by Step

Integration by Parts formula: $\displaystyle \int fg' $ $\displaystyle dx = fg-\int f'g$ $dx$ Double Angle Theorem:$\quad \sin(2x) = 2\sin(x)\cos(x)\quad \displaystyle \rightarrow\quad\frac{1}{2}\sin(2x) = \sin(x)\cos(x)$ $\displaystyle \int_0^πx\cos(x)\sin(x)dx = \int_0^πx[\frac{1}{2}\sin(2x)]dx = \frac{1}{2}\int_0^πx[\sin(2x)]dx$ ____________________________ Let $\displaystyle f = x$ and $\displaystyle g' = \sin(2x)$ thus $\displaystyle f' = 1$ and $\displaystyle g = -\frac{1}{2}\cos(2x)$ ____________________________ $\displaystyle \frac{1}{2}\int_0^πx[\sin(2x)]dx = \frac{1}{2}[(x[-\frac{1}{2}\cos(2x)])|_0^π - \int_0^π(1)[-\frac{1}{2}\cos(2x)]dx]$ $\displaystyle \frac{1}{2}([-\frac{x}{2}\cos(2x)]_0^π - [-\frac{1}{4}\sin(2x)]_0^π)$ $\displaystyle \frac{1}{2}([-\frac{π}{2}\cos(2π) - (-\frac{0}{2}\cos(0))] - [-\frac{1}{4}\sin(2π) - (-\frac{1}{4}\sin(0))])$ $\displaystyle \frac{1}{2}([-\frac{π}{2}(1) - 0] - [-\frac{1}{4}(0) + \frac{1}{4}(0)])$ $\displaystyle \frac{1}{2}(-\frac{π}{2} + 0)$ $\displaystyle -\frac{π}{4} ≈ -0.785398$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.