Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.7 Hyperbolic Functions - 6.7 Exercises - Page 491: 67

Answer

$ \frac{1}{2}\tan^{-1}(e^x)+c,c \in \mathbb R$

Work Step by Step

$\int \frac{e^{x}}{1-e^{2x}}dx=\int \frac{e^{x}}{1-(e^{x})^{2} }dx$ Take $t=e^{x}$ so $dt=(e^{x})'dx \to dt=e^{x}dx$ $\int \frac{e^{x}}{1-(e^{x})^{2} }dx \to \int \frac{1}{1-t^{2} }dt $ Using the partial decomposition of fractions it follows: $ \int \frac{1}{1-t^{2} }dt \to \int \frac{1}{(1-t)(1+t) }dt \to \int \frac{1}{2}(\frac{1}{1-t }+\frac{1}{1+t })dt \to \int \frac{1}{2}(\frac{-(1-t)'}{1-t }+\frac{(1+t)'}{1+t })dt \to \int \frac{1}{2}\frac{-(1-t)'}{1-t }dt+\int \frac{1}{2}\frac{(1+t)'}{1+t } dt $ Using the fundamental theorem of calculus it follows: $\int \frac{1}{2}\frac{-(1-t)'}{1-t }dt+\int \frac{1}{2}\frac{(1+t)'}{1+t } dt \to -\frac{1}{2}\ln(|1-t|)+\frac{1}{2}\ln(|1+t|)+c $ So substitute back $t$ by $e^{x}$ it follows: $ -\frac{1}{2}\ln(|1-e^{x}|)+\frac{1}{2}\ln(|1+e^{x}|)+c=\frac{1}{2}\tanh^{-1}(e^x)+c,c \in \mathbb R$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.