Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.7 Hyperbolic Functions - 6.7 Exercises - Page 491: 56

Answer

To prove

Work Step by Step

It is given that:- \[x=\ln (\sec\theta+\tan\theta)\;\;\;...(1)\] To show that:- \[\sec \theta=\cosh x\] Using (1) \[x=\ln (\sec\theta+\tan\theta)\Rightarrow e^x=\sec\theta+\tan\theta\;\;\;...(2)\] \[\frac{1}{e^x}=e^{-x}\] Using (2) \[\Rightarrow e^{-x}=\frac{1}{\sec\theta+\tan\theta}\] \[\Rightarrow e^{-x}=\frac{\sec\theta-\tan\theta }{\sec^2\theta-\tan^2\theta}\] \[\Rightarrow e^{-x}=\frac{\sec\theta-\tan\theta }{1}\] \[\Rightarrow e^{-x}=\sec\theta-\tan\theta \;\;\;...(3)\] \[\cosh x=\frac{e^x+e^{-x}}{2}\] From (2) and (3) \[\cosh x=\frac{(\sec\theta+\tan\theta)+(\sec\theta-\tan\theta)}{2}=\sec\theta\] Hence \[\cosh x=\sec\theta\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.