Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - Review - Exercises - Page 351: 58

Answer

\[\frac{1}{10}\]

Work Step by Step

We have to find :- \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^9+\left(\frac{2}{n}\right)^9+...+\left(\frac{n}{n}\right)^9\right]\] \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^9+\left(\frac{2}{n}\right)^9+...+\left(\frac{n}{n}\right)^9\right]=\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=1}^{n}\left(\frac{k}{n}\right)^9\right]\;\;\;...(1)\] We will use the formula \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=f(n)}^{g(n)}F\left(\frac{k}{n}\right)\right]=\int_{\lim_{n\rightarrow \infty}\frac{f(n)}{n}}^{\lim_{n\rightarrow \infty}\frac{g(n)}{n}}F(x)\;dx\;\;\;...(2)\] Using (2) in (1) \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=1}^{n}\left(\frac{k}{n}\right)^9\right]=\int_{\lim_{n\rightarrow \infty}\frac{1}{n}}^{\lim_{n\rightarrow \infty}\frac{n}{n}}x^9\;dx\] \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=1}^{n}\left(\frac{k}{n}\right)^9\right]=\int_{0}^{1}x^9\;dx\] \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=1}^{n}\left(\frac{k}{n}\right)^9\right]=\left[\frac{x^{10}}{10}\right]_{0}^{1}\] \[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\sum_{k=1}^{n}\left(\frac{k}{n}\right)^9\right]=\frac{1}{10}\] Hence ,\[\lim_{n\rightarrow \infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^9+\left(\frac{2}{n}\right)^9+...+\left(\frac{n}{n}\right)^9\right]=\frac{1}{10}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.