Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - Review - Exercises - Page 351: 56

Answer

\[ \lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}=3\]

Work Step by Step

To find:-\[\lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}\] Which is $\frac{0}{0}$ form We will use L' Hopital's rule which is \[\lim_{x\rightarrow 0}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 0}\frac{f'(x)}{g'(x)}\;\;\;...(1)\] Using (1) \[\lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}=\lim_{h\rightarrow 0}\frac{\frac{d}{dh}\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{(h)'}\;\;\;...(2)\] We will use the result \[\frac{d}{dx}\int_{f(x)}^{g(x)}F(t)\:dt=F(g(x))\cdot g'(x)-F(f(x))\cdot f'(x)\;\;\; ...(3)\] Using (3) in (2) \[\lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}=\lim_{h\rightarrow 0}\frac{\sqrt{1+(2+h)^3}\cdot (1)}{1}\] \[\Rightarrow \lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}=\sqrt{1+(2)^3}=3\] Hence \[ \lim_{h\rightarrow 0}\frac{\int_{2}^{2+h}\sqrt{1+t^3}\:dt}{h}=3\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.