Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.2 Derivatives And Integrals Involving Logarithmic Functions - Exercises Set 6.2 - Page 425: 40

Answer

$$\left( {\bf{a}} \right)\frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{1}{{x{{\ln }^2}x}},\left( {\bf{b}} \right)\frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = - \frac{1}{{{{\ln }^2}\left( {\ln x} \right)x\ln x}}$$

Work Step by Step

$$\eqalign{ & \left( {\bf{a}} \right)\frac{d}{{dx}}\left[ {{{\log }_{\left( {1/x} \right)}}e} \right] \cr & {\text{where }}{\log _a}b = \frac{{\ln b}}{{\ln a}}.{\text{ Thus}}{\text{,}} \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{d}{{dx}}\left[ {\frac{{\ln e}}{{\ln \left( {1/x} \right)}}} \right] \cr & or \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{d}{{dx}}\left[ {\frac{1}{{\ln {x^{ - 1}}}}} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{d}{{dx}}\left[ {\frac{1}{{ - \ln x}}} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = - \frac{d}{{dx}}\left[ {{{\left( {\ln x} \right)}^{ - 1}}} \right] \cr & {\text{By the chain rule}} \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = {\left( {\ln x} \right)^{ - 2}}\frac{d}{{dx}}\left[ {\ln x} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = {\left( {\ln x} \right)^{ - 2}}\left( {\frac{1}{x}} \right) \cr & {\text{Simplify}} \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{1}{{{{\left( {\ln x} \right)}^2}}}\left( {\frac{1}{x}} \right) \cr & \frac{d}{{dx}}\left[ {{{\log }_x}e} \right] = \frac{1}{{x{{\ln }^2}x}} \cr & \cr & \left( {\bf{b}} \right)\frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] \cr & {\text{where }}{\log _a}b = \frac{{\ln b}}{{\ln a}}.{\text{ Thus}}{\text{,}} \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = \frac{d}{{dx}}\left[ {\frac{{\ln e}}{{\ln \left( {\ln x} \right)}}} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = \frac{d}{{dx}}\left[ {\frac{1}{{\ln \left( {\ln x} \right)}}} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = \frac{d}{{dx}}\left[ {{{\left( {\ln \left( {\ln x} \right)} \right)}^{ - 1}}} \right] \cr & {\text{By the chain rule}} \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = - {\left( {\ln \left( {\ln x} \right)} \right)^{ - 1}}^{ - 1}\frac{d}{{dx}}\left[ {\ln \left( {\ln x} \right)} \right] \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = - {\left( {\ln \left( {\ln x} \right)} \right)^{ - 2}}\left[ {\frac{{1/x}}{{\ln x}}} \right] \cr & {\text{Simplify}} \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = - {\left( {\ln \left( {\ln x} \right)} \right)^{ - 2}}\left( {\frac{1}{{x\ln x}}} \right) \cr & \frac{d}{{dx}}\left[ {{{\log }_{\ln x}}e} \right] = - \frac{1}{{{{\ln }^2}\left( {\ln x} \right)x\ln x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.