Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - Supplementary Exercises - Page 163: 20

Answer

See explanation

Work Step by Step

matrix. The MATLAB command is $\mathbf{A}_{4}=$ ones (4) eye (4) . For the inverse use $\operatorname{inv}\left(\mathbf{A}_{4}\right)$ $\left[\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad A_{4}^{-1}=\left[\begin{array}{cccc}-2 / 3 & 1 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3 & 1 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & -2 / 3 & 1 / 3 \\ 1 / 3 & 1 / 3 & 1 / 3 & -2 / 3\end{array}\right]$ $A_{5}=\left[\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right], \quad A_{5}^{-1}=\left[\begin{array}{ccccc}-3 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\ 1 / 4 & -3 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\ 1 / 4 & 1 / 4 & -3 / 4 & 1 / 4 & 1 / 4 \\ 1 / 4 & 1 / 4 & 1 / 4 & -3 / 4 & 1 / 4 \\ 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 & -3 / 4\end{array}\right]$ $A_{6}=\left[\begin{array}{cccccc}0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0\end{array}\right], \quad A_{6}^{-1}=\left[\begin{array}{cccccc}-4 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & -4 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & -4 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & -4 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & -4 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & -4 / 5\end{array}\right]$ The construction of $A_{6}$ and the appearance of its inverse suggest that the inverse is related to $I_{6} .$ In fact, $A_{6}^{-1}+I_{6}$ is $1 / 5$ times the $6 \times 6$ matrix of ones. Let J denotes the nn matrix of ones. The conjecture is \[ A_{n}=J-I_{n} \] and \[ A_{n}^{-1}=\frac{1}{n-1} \cdot J-I_{n} \] \[ J^{2}=n J \] \[ A_{n} J=(J-1) J^{2}-J=(n-1) J \] Now compute \[ A_{n}\left((n-1)^{-1} J-I\right)=(n-1)^{-1} A_{n} J-A_{n}=J-(J-I)=I \] since $A_{n}$ is square, An is invertible and its inverse is \[ (n-1)^{-1} J-I \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.