Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1032: 59

Answer

$$\vec E= ( 6\times10^{5}\;\hat i+ 1\times10^{5}\;\hat k) \;\rm V/m$$

Work Step by Step

We are given that, - $\vec F=( 9.6\times10^{-14}\;\hat i-9.6\times10^{-14}\;\hat k)\;\rm N$ - $\vec v= ( 5\times 10^6\;\hat i)\;\rm m/s$ - $\vec B=( 0.1\;\hat j)\;\rm T$ Recalling that the net force exerted on a moving charge in an electromagnetic field is given by $$ \vec F=q(\vec E+\vec v\times \vec B)$$ So, the net force exerted on an electron is given by $$ \vec F=e(\vec E+\vec v\times \vec B)$$ Hence, the electric field is given by $$\vec E=\dfrac{ \vec F}{e}-[v\times \vec B=$$ Plug the known; $$\vec E=\dfrac{ ( 9.6\times10^{-14}\;\hat i-9.6\times10^{-14}\;\hat k)}{(-1.6\times 10^{-19})}-[( 5\times 10^6\;\hat i)\times ( 0.1\;\hat j)]$$ $$\vec E= -6\times10^{5}\;\hat i+ 6\times10^{5}\;\hat k - 5\times 10^5\;\hat k$$ $$\vec E= (- \color{red}{\bf6\times10^{5}}\;\hat i+ \color{red}{\bf1\times10^{5}}\;\hat k) \;\rm V/m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.