Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 29 - Potential and Field - Exercises and Problems - Page 864: 43

Answer

$1000\;\rm V/m$, $127^\circ$ CCW from $+x$axis.

Work Step by Step

We know that the electric field is given by $$\vec E=-\left[ \dfrac{\partial V}{\partial x}\;\hat i+\dfrac{\partial V}{\partial y}\;\hat j\right]$$ where $V=150x^2-200y^2$ $$\vec E=-\left[ \dfrac{\partial (150x^2-200y^2)}{\partial x}\;\hat i+\dfrac{\partial (150x^2-200y^2)}{\partial y}\;\hat j\right]$$ $$\vec E=-\left[ 300x\;\hat i-400y\;\hat j\right]$$ $$\boxed{\vec E=- 300x\;\hat i+400y\;\hat j}$$ At $(x,y)=(2\;{\rm m}, 2\;{\rm m})$, $$\vec E=- 300(2)\;\hat i+400(2)\;\hat j $$ $$\vec E= ( - {\bf600}\;\hat i+{\bf 800}\;\hat j )\;\rm V/m$$ So its magnitude is given by $$E=\sqrt{E_x^2+E_y^2}=\sqrt{(-600)^2+(800)^2}$$ $$E=\color{red}{\bf 1000}\;\rm V/m$$ Since the $E_x$ is negative while $E_y$ is positive, this is the second quadrant. Thus, its direction, which is counterclockwise from the positive $x$-axis, is given by $$\theta=180^\circ-\tan^{-1}\left[ \dfrac{E_y}{|E_x|}\right]$$ $$\theta=180^\circ-\tan^{-1}\left[ \dfrac{800}{600}\right]$$ $$\theta= \color{red}{\bf 127}^{\circ}\tag {CCW from $+x$-axis}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.