Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 27 - Gauss's Law - Exercises and Problems - Page 808: 46

Answer

See the detailed answer below.

Work Step by Step

According to Gauss’s law, $$\oint \vec E d \vec A=\dfrac{Q_{in}}{\epsilon_0}$$ Hence, $$EA_{sphere}=\dfrac{Q_{in}}{\epsilon_0}$$ So the electric field is given by $$E=\dfrac{Q_{in}}{A_{sphere}\epsilon_0}$$ $$\boxed{E=\dfrac{Q_{in}}{4\pi r^2\epsilon_0}}$$ where $r$ is the radius of the Gaussian sphere. We will use this formula to find the electric field for both cases. In the figure below we have 4 dashed circles which represent the 4 Gaussian spheres. $$\color{blue}{\bf [a]}$$ $\bullet$ when $r\lt a$, see circle 1 in the figure below. $$E=\dfrac{Q_{in}}{4\pi r^2\epsilon_0}$$ where $Q_{in}$ is the charge enclosed inside the Gaussian surface inside the ball. The charge inside the ball is uniformly distributed, so $$\rho_{e}=\dfrac{-Q}{V}=\dfrac{-Q}{\frac{4}{3}\pi a^3}$$ Hence, $$Q_{in}=\rho_e \frac{4}{3}\pi r^3=\dfrac{-Q}{\frac{4}{3}\pi a^3}\left( \frac{4}{3}\pi r^3\right)=\dfrac{-Qr^3}{a^3} $$ Thus, $$E=\dfrac{-Qr^3}{4\pi r^2a^3\epsilon_0}$$ $$E=-\dfrac{ 1 }{4\pi \epsilon_0}\dfrac{Qr}{ a^3}$$ $$\boxed{\vec E=-\dfrac{ 1 }{4\pi \epsilon_0}\dfrac{Qr}{ a^3}}\tag{Inward}$$ $$\color{blue}{\bf [b]}$$ $\bullet$ when $a\lt r\lt b$, see circle 2 in the figure below. $$E=\dfrac{Q_{in}}{4\pi r^2\epsilon_0}$$ where $Q_{in}=-Q$ $$E=\dfrac{-Q}{4\pi r^2\epsilon_0}$$ Hence, $$\boxed{\vec E=-\dfrac{ 1}{4\pi \epsilon_0}\dfrac{Q}{r^2}\;\hat r}\tag{Inward}$$ $$\color{blue}{\bf [c]}$$ $\bullet$ when $b\lt r\lt c$, see circle 3 in the figure below. $$E=\dfrac{Q_{in}}{4\pi r^2\epsilon_0}$$ where $Q_{in}=-Q+Q=0$ where $+Q$ is the charge of the inner surface of the hollow metal sphere due to polarization due to the negative charge of the ball. Also, we know that the electric field inside a conductor is zero. $$E=\dfrac{-Q}{4\pi r^2\epsilon_0}$$ Hence, $$\boxed{\vec E=\bf0\;\rm N/C}$$ $$\color{blue}{\bf [d]}$$ $\bullet$ when $r\gt c$, see circle 4 in the figure below. $$E=\dfrac{Q_{in}}{4\pi r^2\epsilon_0}$$ where $Q_{in}=+2Q-Q=Q$ $$E=\dfrac{Q}{4\pi r^2\epsilon_0}$$ Hence, $$\boxed{\vec E=\dfrac{ 1}{4\pi \epsilon_0}\dfrac{Q}{r^2}\;\hat r}\tag{Outward}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.