Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 22 - Wave Optics - Exercises and Problems - Page 652: 64

Answer

$14.2\;\rm \mu m$

Work Step by Step

In an interferometer, we know, in condition of constructive interference, that $$\Delta r=m\lambda$$ where $\Delta r=2(L_2-L_1)$ Hence, in the first case, when you moved M$_2$ away from the spliter, $$2(L_2-L_1)=m\lambda$$ $$L_2-L_1=\frac{1}{2}m\lambda \tag 1$$ And in the second case, when the other student moved M$_2$ toward the spliter, $$L_2'-L_1=\frac{1}{2}m'\lambda' \tag 2 $$ Solving (1) for $L_1$l $$L_1=L_2-\frac{1}{2}m\lambda$$ Plugging into (2); $$L_2'-\left[L_2-\frac{1}{2}m\lambda\right]=\frac{1}{2}m'\lambda' $$ $$L_2'- L_2+\frac{1}{2}m\lambda =\frac{1}{2}m'\lambda' $$ $$\overbrace{L_2- L_2'}^{\text{M$_2$ net displacement}} =\frac{1}{2}m\lambda-\frac{1}{2}m'\lambda' $$ $$L_2' -L_2=\frac{1}{2}m'\lambda' -\frac{1}{2}m\lambda $$ Plugging the known; $$ L_2- L_2' =\frac{1}{2}(1200)(632.8)-\frac{1}{2}(1200)(656.5) $$ $$ L_2- L_2'=\bf -14220\;\rm nm$$ $$L_2'-L_2=\color{red}{\bf14.2}\;\rm\mu m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.