Prealgebra (7th Edition)

Published by Pearson
ISBN 10: 0321955048
ISBN 13: 978-0-32195-504-3

Chapter 9 - Section 9.3 - Area, Volume, and Surface Area - Exercise Set: 33

Answer

$A=4\times5^2\pi=100\pi\approx100\times \frac{22}{7}=\frac{2200}{7}\approx 314.2857$ square in. $V=\frac{4}{3}\times5^3\pi=\frac{500}{3}\pi\approx 500\times\frac{22}{7}=\frac{11000}{7}\approx 1571.42857$ cubic in.

Work Step by Step

The volume of a sphere can be calculated as: $V=\frac{4}{3}r^3\pi$ Here: $d=10$ in $r=\frac{d}{2}=5$ in $V=\frac{4}{3}\times5^3\pi=\frac{500}{3}\pi\approx 500\times\frac{22}{7}=\frac{11000}{7}\approx 1571.42857$ cubic in. The surface area of a sphere can be calculated as: $A=4\pi r^2$ Here: $A=4\times5^2\pi=100\pi\approx100\times \frac{22}{7}=\frac{2200}{7}\approx 314.2857$ square in.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.