Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.8 Exercises - Page 1152: 19

Answer

$\iint_{S} curl F \cdot dS=\int_{C} F \cdot dr =0$

Work Step by Step

Stoke's Theorem states that $\iint_{S} curl F \cdot dS=\int_{C} F \cdot dr $ Let us divide the sphere into the upper and lower hemispheres, say $S_1, S_2$ respectively. This means that $C$ is a circle in the xy plane oriented in the counter-clockwise direction. Therefore, $\iint_{S_1} curl F \cdot dS=\int_{C} F \cdot dr $ Now, we have: $\iint_{S_2} curl F \cdot dS=\int_{-C} F \cdot dr=-\int_{C} F \cdot dr $ Thus, $\iint_{S} curl F \cdot dS=\iint_{S_1} curl F \cdot dS+\iint_{S_2} curl F \cdot dS=\int_{C} F \cdot dr-\int_{C} F \cdot dr=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.