Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1063: 45

Answer

$\approx \dfrac{136 \pi}{99}$

Work Step by Step

The equation of a bumpy sphere can be written as: $ \rho=1+\dfrac{1}{5} \sin 6 \theta \sin 5 \phi$ The spherical coordinates system can be expresses as: $x=\rho \sin \phi \cos \theta $ and $ y=\rho \sin \phi \sin \theta ; z=\rho \cos \phi$ and $\rho=\sqrt {x^2+y^2+z^2}$ or, $\rho^2=x^2+y^2+z^2$ Therefore, $Volume= \iiint_{V} dV=\int_0^{\pi} \int_0^{2 \pi} \int_{0}^{1+\dfrac{1}{5} \sin 6 \theta \sin 5 \phi} \rho^2 \sin \phi d\rho \ d\theta d \phi $ By using a calculator, we have: $Volume=\int_0^{\pi} \int_0^{2 \pi} \int_{0}^{1+\dfrac{1}{5} \sin 6 \theta \sin 5 \phi} \rho^2 \sin \phi d\rho \ d\theta d \phi \approx \dfrac{136 \pi}{99}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.