Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.10 Exercises - Page 1071: 17

Answer

$6 \pi$

Work Step by Step

Since, $R=${$(u,v) | 0 \leq v \leq 1-u, 0\leq u \leq 1$} $Jacobian, J =\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=\begin{vmatrix} 2&0\\0&3\end{vmatrix}=6-0=6$ Now, we have $\iint_R x^2 dA=\int_{-1}^1 [\int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} 24 u^2 du dv$ Plug $p =r \cos \theta$ and $q=r \sin \theta$ $\iint_R x^2 dA=\int_{-1}^1 [\int_{-\sqrt{1-q^2}}^{\sqrt{1-q^2}} 24 p^2 dp dq$ or, $=\int_0^{2 \pi} \int_0^1 24 (r \cos \theta)^2 r dr d \theta$ or, $=\int_0^{2 \pi} 6 \cos^2 d \theta$ or, $=(3) \int_0^{2 \pi} (1+\cos 2 \theta) d \theta$ Hence, we have $\iint_R x^2 dA=3 [\theta+\dfrac{\sin (2 \theta)}{2}]_0^{2 \pi}=6 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.