Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.4 Exercises - Page 751: 40

Answer

a) $\sum a_n$ is convergent b) i) See proof ii) See proof

Work Step by Step

We are given the series $\sum a_n$ and $\sum b_n$: 1) $a_n\geq 0,b_n\geq 0$ 2) $\sum b_n$ convergent 3) $\displaystyle{\lim_{n \to \infty}}\dfrac{a_n}{b_n}=0$ Because $\displaystyle{\lim_{n \to \infty}}\dfrac{a_n}{b_n}=0$, we have $a_n\leq b_n$ for $n$ sufficiently large. Using the Comparison Test, because $\sum b_n$ convergent, we get that $\sum a_n$ is convergent. b) i) We are given the series: $\sum_{n=1}^{\infty} \dfrac{\ln n}{n^3}$ Consider $a_n=\dfrac{\ln n}{n^3}$, $b_n=\dfrac{1}{n^2}$. The series $\sum b_n$ is convergent. Determine $\displaystyle{\lim_{n \to \infty}}\dfrac{a_n}{b_n}=\displaystyle{\lim_{n \to \infty}}\dfrac{\dfrac{\ln n}{n^3}}{\dfrac{1}{n^2}}=\displaystyle{\lim_{n \to \infty}}\dfrac{\ln n}{n}$ $=\displaystyle{\lim_{n \to \infty}}\dfrac{\dfrac{1}{n}}{1}=0$ Using part a), we conclude that the series $\sum a_n$ is convergent. ii) We are given the series: $\sum_{n=1}^{\infty} \dfrac{\ln n}{\sqrt n e^n}$ Consider $a_n=\dfrac{\ln n}{\sqrt n e^n}$, $b_n=\dfrac{1}{e^n}$. The series $\sum b_n$ is convergent. Determine $\displaystyle{\lim_{n \to \infty}}\dfrac{a_n}{b_n}=\displaystyle{\lim_{n \to \infty}}\dfrac{\dfrac{\ln n}{\sqrt n e^n}}{\dfrac{1}{e^n}}=\displaystyle{\lim_{n \to \infty}}\dfrac{\ln n}{\sqrt n}$ $=\displaystyle{\lim_{n \to \infty}}\dfrac{\dfrac{1}{n}}{\dfrac{1}{2\sqrt n}}=\displaystyle{\lim_{n \to \infty}} \dfrac{2}{\sqrt n}=0$ Using part a), we conclude that the series $\sum a_n$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.