Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 6 - Applications of the Derivative - 6.4 Implicit Differentiation - 6.4 Exercises - Page 334: 14

Answer

$$\frac{{dy}}{{dx}} = \frac{{3{x^2} - 2x{e^y}}}{{{x^2}{e^y} + 1}}$$

Work Step by Step

$$\eqalign{ & {x^2}{e^y} + y = {x^3} \cr & {\text{take the derivative on both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {{x^2}{e^y} + y} \right) = \frac{d}{{dx}}\left( {{x^3}} \right) \cr & {\text{use sum rule as follows}} \cr & \frac{d}{{dx}}\left( {{x^2}{e^y}} \right) + \frac{d}{{dx}}\left( y \right) = \frac{d}{{dx}}\left( {{x^3}} \right) \cr & {\text{use the product rule}} \cr & {x^2}\frac{d}{{dx}}\left( {{e^y}} \right) + {e^y}\frac{d}{{dx}}\left( {{x^2}} \right) + \frac{d}{{dx}}\left( y \right) = \frac{d}{{dx}}\left( {{x^3}} \right) \cr & {\text{solve the derivatives using the chain rule and the power rule}} \cr & {x^2}{e^y}\frac{{dy}}{{dx}} + {e^y}\left( {2x} \right) + \frac{{dy}}{{dx}} = 3{x^2} \cr & {x^2}{e^y}\frac{{dy}}{{dx}} + 2x{e^y} + \frac{{dy}}{{dx}} = 3{x^2} \cr & {\text{combine terms and solve for }}\frac{{dy}}{{dx}} \cr & {x^2}{e^y}\frac{{dy}}{{dx}} + \frac{{dy}}{{dx}} = 3{x^2} - 2x{e^y} \cr & \left( {{x^2}{e^y} + 1} \right)\frac{{dy}}{{dx}} = 3{x^2} - 2x{e^y} \cr & \frac{{dy}}{{dx}} = \frac{{3{x^2} - 2x{e^y}}}{{{x^2}{e^y} + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.