Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Problems Plus - Page 542: 11

Answer

$$ \lim _{t \rightarrow 0} \left[ \int_{0}^{1}[b x+a(1-x)]^{t} d x \right]^{\frac{1}{t}} =e^{-1}(\frac{b^{b}}{a^{a}})^{\frac{1}{(b-a)}} $$

Work Step by Step

$$ \begin{aligned} \int_{0}^{1}[b x+a(1-x)]^{t} d x& =\int_{a}^{b} \frac{u^{t}}{(b-a)} d u \\ &\quad\quad\quad\left[\begin{array}{c}{ \text {Let }u=b x+a(1-x), x : 0 \rightarrow 1 } \\ { \text {Then }d u=(b-a) d x}, u:a \rightarrow b \end{array}\right] \\ &=\left[\frac{u^{t+1}}{(t+1)(b-a)}\right]_{a}^{b} \\ &=\frac{b^{t+1}-a^{t+1}}{(t+1)(b-a)}. \end{aligned} $$ Let $$ y=\lim _{t \rightarrow 0}\left[ \frac{b^{t+1}-a^{t+1}}{(t+1)(b-a)}\right]^{\frac{1}{t}} $$ Then $$ \ln y= \lim _{t \rightarrow 0} \left[ {\frac{1}{t}} \ln \frac{b^{t+1}-a^{t+1}}{(t+1)(b-a)}\right] $$ The limit is of the form $\frac {0}{0} $, so we can use L'Hospital's rule to get: $$ \begin{aligned} \ln y &=\lim _{t \rightarrow 0}\left[\frac{b^{t+1} \ln b-a^{t+1} \ln a}{b^{t+1}-a^{t+1}}-\frac{1}{t+1}\right] \\ &=\frac{b \ln b-a \ln a}{b-a}-1 \\ &=\frac{b \ln b}{b-a}-\frac{a \ln a}{b-a}-\ln e \\ &=\ln \frac{b^{b /(b-a)}}{e a^{a /(b-a)}} \end{aligned} $$ Thus $$ y=e^{-1}(\frac{b^{b}}{a^{a}})^{\frac{1}{(b-a)}}, $$ and therefore $$ \lim _{t \rightarrow 0} \left[ \int_{0}^{1}[b x+a(1-x)]^{t} d x \right]^{\frac{1}{t}} =e^{-1}(\frac{b^{b}}{a^{a}})^{\frac{1}{(b-a)}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.