Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 6 - Problems Plus - Page 469: 9

Answer

Let $P(a,2a^2)$ Let A=The area between curve $y=2x^2$ and $y=x^2$ $A=\int_0^a2x^2-x^2dx=\frac13x^3|_0^a=\frac{a^3}3$ B=The area between curve $y=2x^2$ and C Because $y=2x^2,x=\sqrt{\frac y2}$ Consider the curve C as $x=C(y)$ $B=\int_0^{2a^2}\sqrt{\frac y2}-C(y)dy$ $B=[\frac43(\frac y2)^{\frac32}]_0^{2a^2}-\int_0^{2a^2}C(y)dy$ $B=\frac43a^3\int_0^{2a^2}C(y)dy$ Because $A=B$ $\int_0^{2a^2}C(y)dy=a^3$ $\left(\int_0^{2a^2}C(y)dy\right)'=(a^3)'$ $4aC(2a^2)=3a^2$ let $y=2a^2,a=\sqrt{\frac y2}$ So $C(y)=\frac34\sqrt{\frac y2}$ As $C(y)=x$ $\frac34\sqrt{\frac y2}=x$ $y=\frac{32}9x^2$

Work Step by Step

Let $P(a,2a^2)$ Let A=The area between curve $y=2x^2$ and $y=x^2$ $A=\int_0^a2x^2-x^2dx=\frac13x^3|_0^a=\frac{a^3}3$ B=The area between curve $y=2x^2$ and C Because $y=2x^2,x=\sqrt{\frac y2}$ Consider the curve C as $x=C(y)$ $B=\int_0^{2a^2}\sqrt{\frac y2}-C(y)dy$ $B=[\frac43(\frac y2)^{\frac32}]_0^{2a^2}-\int_0^{2a^2}C(y)dy$ $B=\frac43a^3\int_0^{2a^2}C(y)dy$ Because $A=B$ $\int_0^{2a^2}C(y)dy=a^3$ $\left(\int_0^{2a^2}C(y)dy\right)'=(a^3)'$ $4aC(2a^2)=3a^2$ let $y=2a^2,a=\sqrt{\frac y2}$ So $C(y)=\frac34\sqrt{\frac y2}$ As $C(y)=x$ $\frac34\sqrt{\frac y2}=x$ $y=\frac{32}9x^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.