Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Review - Exercises - Page 424: 72

Answer

$\lim\limits_{n \to \infty}\frac{1}{n}[(\frac{1}{n})^9+(\frac{2}{n})^9+(\frac{3}{n})^9+...+(\frac{n}{n})^9] = \frac{1}{10}$

Work Step by Step

An integral can be expressed as the limit of a Riemann sum: $\int_{a}^{b}f(x)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i^*)\Delta x$ Consider the interval $[0,1]$: $\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$ $x_i^* = a+i~\Delta x = 0+\frac{i}{n} = \frac{i}{n}$ Note that $x_i^*$ is the right endpoint of each subinterval. $\lim\limits_{n \to \infty}\frac{1}{n}[(\frac{1}{n})^9+(\frac{2}{n})^9+(\frac{3}{n})^9+...+(\frac{n}{n})^9]$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}(\frac{i}{n})^9\cdot \frac{1}{n}$ $= \int_{0}^{1}x^9~dx$ $= \frac{x^{10}}{10}~\vert_{0}^{1}$ $= \frac{(1)^{10}}{10}- \frac{(0)^{10}}{10}$ $= \frac{1}{10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.