Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 313: 81

Answer

(a) $\lim\limits_{t \to \infty}P(t) = M$ This answer is to be expected. The text in the question states: "$M$ is called the carrying capacity and represents the maximum population size that can be supported." (b) $\lim\limits_{M \to \infty}P(t) = P_0~e^{kt}$ Note that this function is an exponential function.

Work Step by Step

(a) $\lim\limits_{t \to \infty}P(t) = \lim\limits_{t \to \infty}\frac{M}{1+Ae^{-kt}}$ $\lim\limits_{t \to \infty}P(t) = \frac{M}{1+0}$ $\lim\limits_{t \to \infty}P(t) = M$ This answer is to be expected. The text in the question states: "$M$ is called the carrying capacity and represents the maximum population size that can be supported." (b) $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{M}{1+Ae^{-kt}}$ $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{M}{1+\frac{M-P_0}{P_0e^{kt}}}$ $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{M}{\frac{P_0~e^{kt}+M-P_0}{P_0e^{kt}}}$ $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{M~P_0~e^{kt}}{P_0~e^{kt}+M-P_0}$ $\lim\limits_{M \to \infty}P(t) = \frac{\infty}{\infty}$ We can apply L'Hospital's Rule: $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{M~P_0~e^{kt}}{P_0~e^{kt}+M-P_0}$ $\lim\limits_{M \to \infty}P(t) = \lim\limits_{M \to \infty}\frac{P_0~e^{kt}}{0+1+0}$ $\lim\limits_{M \to \infty}P(t) = P_0~e^{kt}$ Note that this function is an exponential function.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.