Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.8 - The Derivative as a Function - 2.8 Exercises: 32

Answer

a) The first image is the first graph of $f(x) = \sqrt{6-x}$ b) The second image is the graph of $f'(x) = \sqrt{6-x} = \frac{-1}{2\sqrt{6-x}}$ c) $f'(x) = \sqrt{6-x} = \frac{-1}{2\sqrt{6-x}}$ The domain of $f(x)$ = $(-\infty, 6]$ The domain of $f'(x)$ = $(-\infty, 6)$
1505347200

Work Step by Step

a) The first image is the graph of $ f(x) = \sqrt{6-x}$. We obtain this by using the transformations: reflect $\sqrt{x}$ around $y$-axis and move right 6 units. b) $f(x) = \sqrt{6-x}$ $f'(x) = \frac{d}{dx} (6-x)^{\frac{1}{2}}$ $f'(x) = \frac{1}{2} (6-x)^{\frac{1}{2} - 1} \times (-1)$ $f'(x) = \frac{1}{2} (6-x)^{-\frac{1}{2}} \times (-1)$ $f'(x) = \frac{1}{2\sqrt{6-x}} \times (-1)$ $f'(x) = \frac{-1}{2\sqrt{6-x}}$ (See second image.) (c) $f'(x) = \lim\limits_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim\limits_{h \to 0} \frac{f(\sqrt{6-(x+h)}) - f(\sqrt{6-x})}{h}$ $f'(x) = \lim\limits_{h \to 0} \frac{\sqrt{6-x-h} - \sqrt{6-x}}{h}$ $f'(x) = \lim\limits_{h \to 0} \frac{\sqrt{6-x-h} - \sqrt{6-x}}{h} \times \frac{\sqrt{6-x-h} + \sqrt{6-x}}{\sqrt{6-x-h} + \sqrt{6-x}}$ $f'(x) = \lim\limits_{h \to 0} \frac{(\sqrt{6-x-h})^2 - (\sqrt{6-x})^2}{h(\sqrt{6-x-h} + \sqrt{6-x})}$ $f'(x) = \lim\limits_{h \to 0} \frac{(6-x-h) - (6-x)}{h(\sqrt{6-x-h} + \sqrt{6-x})}$ $f'(x) = \lim\limits_{h \to 0} \frac{6-x-h - 6+x}{h(\sqrt{6-x-h} + \sqrt{6-x})}$ $f'(x) = \lim\limits_{h \to 0} \frac{-h}{h(\sqrt{6-x-h} + \sqrt{6-x})}$ $f'(x) = \lim\limits_{h \to 0} \frac{-1}{\sqrt{6-x-h} + \sqrt{6-x}}$ Replace $h$ for $0$ $f'(x) = \frac{-1}{\sqrt{6-x-0} + \sqrt{6-x}}$ $f'(x) = \frac{-1}{\sqrt{6-x} + \sqrt{6-x}}$ $f'(x) = \frac{-1}{2\sqrt{6-x}}$ Domain of $f(x)$ is $(-\infty, 6]$ Domain of $f'(x)$ is $(-\infty, 6)$
Small 1505347200
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.