Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 151: 52

Answer

$V'(t) = \frac{500}{9}t-\frac{10,000}{3}$ The units of $V'(t)$ are $gallons/min$ Initially, the magnitude of the flow rate is $3333.3~gallons/min$ As water drains out of the tank, the magnitude of the flow rate gradually decreases to 0 during the 60 minutes when the tank is draining. The magnitude of the flow rate is the greatest at $t =0$ The magnitude of the flow rate is the least at $t = 60$

Work Step by Step

$V(t) = 100,000(1-\frac{1}{60}~t)^2$ We can find $V'(t)$: $V'(t) = \lim\limits_{h \to 0}\frac{V(t+h)-V(t)}{h}$ $V'(t) = \lim\limits_{h \to 0}\frac{100,000(1-\frac{t+h}{60}~)^2-100,000(1-\frac{1}{60}~t)^2}{h}$ $V'(t) = \lim\limits_{h \to 0}\frac{100,000(1-\frac{t+h}{30}+\frac{t^2+2th+h^2}{3600})-100,000(1-\frac{t}{30}+\frac{t^2}{3600})}{h}$ $V'(t) = \lim\limits_{h \to 0}\frac{100,000[(1-\frac{t+h}{30}+\frac{t^2+2th+h^2}{3600})-(1-\frac{t}{30}+\frac{t^2}{3600})]}{h}$ $V'(t) = \lim\limits_{h \to 0}\frac{100,000(-\frac{h}{30}+\frac{2th+h^2}{3600})}{h}$ $V'(t) = \lim\limits_{h \to 0}100,000(-\frac{1}{30}+\frac{2t+h}{3600})$ $V'(t) = 100,000(-\frac{1}{30}+\frac{t}{1800})$ $V'(t) = \frac{500}{9}t-\frac{10,000}{3}$ The units of $V'(t)$ are $gallons/min$ When $t=0$: $V'(0) = \frac{500}{9}(0)-\frac{10,000}{3} = -\frac{10,000}{3}= -3333.3$ $V(0) = 100,000(1-\frac{0}{60})^2 = 100,000$ When $t=10$: $V'(10) = \frac{500}{9}(10)-\frac{10,000}{3} = -\frac{10,000}{3}=-2777.8$ $V(10) = 100,000(1-\frac{10}{60})^2 = 69,444.4$ When $t=20$: $V'(20) = \frac{500}{9}(20)-\frac{10,000}{3} = -\frac{10,000}{3}= -2222.2$ $V(20) = 100,000(1-\frac{20}{60})^2 = 44,444.4$ When $t=30$: $V'(30) = \frac{500}{9}(30)-\frac{10,000}{3} = -\frac{10,000}{3} = -1666.7$ $V(30) = 100,000(1-\frac{30}{60})^2 = 25,000$ When $t=40$: $V'(40) = \frac{500}{9}(40)-\frac{10,000}{3} = -\frac{10,000}{3} = -1111.1$ $V(40) = 100,000(1-\frac{40}{60})^2 = 11,111.1$ When $t=50$: $V'(50) = \frac{500}{9}(50)-\frac{10,000}{3} = -\frac{10,000}{3} = -555.6$ $V(50) = 100,000(1-\frac{50}{60})^2 = 2777.8$ When $t=60$: $V'(60) = \frac{500}{9}(60)-\frac{10,000}{3} = -\frac{10,000}{3} = 0$ $V(60) = 100,000(1-\frac{60}{60})^2 = 0$ Initially, the magnitude of the flow rate is $3333.3~gallons/min$ As water drains out of the tank, the magnitude of the flow rate gradually decreases to 0 during the 60 minutes when the tank is draining. The magnitude of the flow rate is the greatest at $t =0$ The magnitude of the flow rate is the least at $t = 60$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.