Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.3 - Partial Derivatives - 14.3 Exercise - Page 926: 80

Answer

$ \dfrac{\partial^{2}u}{\partial x_{1}^{2}}+\dfrac{\partial^{2}u}{\partial x_{2}^{2}}+\cdots+\dfrac{\partial^{2}u}{\partial x_{n}^{2}}=u$

Work Step by Step

We are given that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=1$ for $u=e^{[a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}]}$ Here, we have for each $x_{\iota}$, $\dfrac{\partial}{\partial x_{i}}=a_{\iota} \times e^{[a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}]}$ Take the second derivative as follows: $ \dfrac{\partial^{2}}{\partial x_{i}^{2}}=a_{i}^{2} \times e^{[a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}]}$. Then, we have $ \dfrac{\partial^{2}u}{\partial x_{1}^{2}}+\dfrac{\partial^{2}u}{\partial x_{2}^{2}}+\cdots+\dfrac{\partial^{2}u}{\partial x_{n}^{2}}=(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}) \times e^{[a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}]}=e^{[a_{1}x_{1}+a_{2}x_{2}+\cdots+a_{n}x_{n}]}=u$ Hence, the result has been verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.