Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 13 - Review - Exercises - Page 882: 15

Answer

An equation of the osculating plane of the curve: $$ x=\sin 2t, \ \ y=t, \ \ z=\cos 2t $$ at the point $(0,\pi,1)$ is: $$ x-2 y+2 \pi=0 $$

Work Step by Step

We have the parametric equations of the curve: $$ x=\sin 2t, \ \ y=t, \ \ z=\cos 2t $$ So, the curve is: $$ \mathrm{r}(t)=\left\langle \sin 2t, t, \cos 2t \right\rangle $$ and the point $(0,\pi, 1)$ corresponds to $ t=\pi. $ Now, we first compute the ingredients needed : $$ r^{\prime}(t) =\left\langle 2 \cos 2t, 1, -2\sin2t \right\rangle $$ $\Rightarrow$ $$ \begin{aligned} \left|r^{\prime}(t)\right|&=\sqrt{(2 \cos 2t)^{2}+(1)^{2}+(-2\sin2t )^{2}}\\ &=\sqrt{1+4(\cos2t)^{2}+(\sin2t )^{2}}\\ &=\sqrt {5} \end{aligned} $$ Then, the unit tangent vector $T(t)$ is given by: $$ \begin{aligned} T(t) &=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\\ &=\frac{1}{\sqrt {5} }\left\langle 2 \cos 2t, 1, -2\sin2t \right\rangle\\ & \ \ \ \ \ \text{corresponds to} \ \ t=\pi ,\\\ &=\frac{1}{\sqrt {5} }\left\langle 2 \cos 2(\pi), 1, -2\sin2(\pi) \right\rangle\\ &=\frac{1}{\sqrt {5} }\left\langle 2, 1, 0 \right\rangle\\ \end{aligned} $$ Then, we can find: $$ \begin{aligned} \mathbf{T}^{\prime}(t)&=\frac{1}{\sqrt {5} }\left\langle -4 \sin 2t, 0, -4\cos 2t \right\rangle \end{aligned} $$ $\Rightarrow$ $$ \begin{aligned} \left|\mathrm{T}^{\prime}(t)\right|& =\frac{1}{\sqrt {5} }\sqrt{\left(-4 \sin 2t \right)^{2}+(0)^{2}+(-4\cos 2t)^{2}}\\ &=\frac{4}{\sqrt {5} } \end{aligned} $$ Then, the principal unit normal vector $N(t)$ is given by: $$ \begin{aligned} \mathrm{N}(t)&=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} \\ &=\frac{\frac{1}{\sqrt {5} }\left\langle -4 \sin 2t, 0, -4\cos 2t \right\rangle}{\frac{4}{\sqrt {5} }} \\ &=\left\langle - \sin 2t, 0, -\cos 2t \right\rangle\\ & \ \ \ \ \ \text{corresponds to} \ \ t=\pi ,\\\ \mathrm{N}(\pi) &=\left\langle - \sin 2(\pi), 0, -\cos 2(\pi) \right\rangle\\ &=\left\langle 0, 0, -1 \right\rangle \end{aligned} $$ The binormal vector $\mathbf{B}(\pi)$ is given by: $$ \begin{aligned} \mathbf{B}(\pi)=\mathbf{T}(\pi) \times \mathbf{N}(\pi)&=\frac{1}{\sqrt {5} }\left[\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 0 \\ 0, & 0 & -1 \\ \end{array}\right]\\ &=\frac{1}{\sqrt {5} } \left\langle -1,2 ,0 \right\rangle.\\ \end{aligned} $$ A simpler normal vector is $ \left\langle -1,2 ,0 \right\rangle $, so an equation of the osculating plane is $$ -1(x-0)+2(y-\pi)+0(z-1)=0 $$ or $$ x-2 y+2 \pi=0 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.