Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 5 - Integration - Review Exercises - Page 397: 57

Answer

$${e^4}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} \cr & {\text{Using properties of limits}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = \frac{{\mathop {\lim }\limits_{x \to 2} \int_2^x {{e^{{t^2}}}dt} }}{{\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right)}} \cr & {\text{Evaluate the limits}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = \frac{{\int_2^2 {{e^{{t^2}}}dt} }}{{\left( {2 - 2} \right)}} = \frac{0}{0} \cr & {\text{Using the L'Hopital's Rule}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = \frac{{\mathop {\lim }\limits_{x \to 2} \frac{d}{{dx}}\left[ {\int_2^x {{e^{{t^2}}}dt} } \right]}}{{\mathop {\lim }\limits_{x \to 2} \frac{d}{{dx}}\left[ {x - 2} \right]}} \cr & {\text{Differentiate, recall that }}\frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)} dt} \right] = f\left( x \right) \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = \frac{{\mathop {\lim }\limits_{x \to 2} \left( {{e^{{x^2}}}} \right)}}{{\mathop {\lim }\limits_{x \to 2} \left( 1 \right)}} \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = \frac{{{e^{{{\left( 2 \right)}^2}}}}}{1} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\int_2^x {{e^{{t^2}}}dt} }}{{x - 2}} = {e^4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.