Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.7 Motion in Space - 11.7 Exercises - Page 827: 14

Answer

$${\bf{v}}\left( t \right) = \left\langle {4{e^{2t}},2{e^{2t}},4{e^{2t}}} \right\rangle ,{\text{ speed}}:{\text{ }}6{e^{2t}}{\text{ and }}{\bf{a}}\left( t \right) = \left\langle {8{e^{2t}},4{e^{2t}},8{e^{2t}}} \right\rangle $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {2{e^{2t}} + 1,{e^{2t}} - 1,2{e^{2t}} - 10} \right\rangle ,\,\,\,\,\,{\text{for }}t \geqslant 0 \cr & \left( a \right){\text{find the velocity and speed }} \cr & {\text{the velocity vector is given by }}\,\,\left( {{\text{see page 817}}} \right) \cr & {\bf{v}}\left( t \right) = {\bf{r}}'\left( t \right) \cr & {\bf{v}}\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle {2{e^{2t}} + 1,{e^{2t}} - 1,2{e^{2t}} - 10} \right\rangle } \right] \cr & {\text{differentiating each component}}{\text{, use }}\frac{d}{{dt}}\left[ {{e^{at}}} \right] = a{e^{at}} \cr & {\bf{v}}\left( t \right) = \left\langle {2{e^{2t}} + 1,{e^{2t}} - 1,2{e^{2t}} - 10} \right\rangle \cr & {\bf{v}}\left( t \right) = \left\langle {4{e^{2t}},2{e^{2t}},4{e^{2t}}} \right\rangle \cr & {\text{The speed of the object is the scalar function }}\left| {{\bf{v}}\left( t \right)} \right|{\text{ then}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \left| {\left\langle {4{e^{2t}},2{e^{2t}},4{e^{2t}}} \right\rangle } \right| \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {{{\left( {4{e^{2t}}} \right)}^2} + {{\left( {2{e^{2t}}} \right)}^2} + {{\left( {4{e^{2t}}} \right)}^2}} \cr & {\text{simplifying}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {16{e^{4t}} + 4{e^{4t}} + 16{e^{4t}}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {36{e^{4t}}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = 6{e^{2t}} \cr & \cr & \left( b \right){\text{find the acceleration of the object}} \cr & {\text{the acceleration vector is given by }}\,\,{\bf{a}}\left( t \right) = {\bf{v}}'\left( t \right)\left( {{\text{see page 817}}} \right) \cr & {\bf{a}}\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle {4{e^{2t}},2{e^{2t}},4{e^{2t}}} \right\rangle } \right] \cr & {\text{differentiating each component}} \cr & {\bf{a}}\left( t \right) = \left\langle {8{e^{2t}},4{e^{2t}},8{e^{2t}}} \right\rangle \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.