#### Answer

$m(4.5)\approx3.688$
$m(-2)=1.25$

#### Work Step by Step

This is the same concept as exercise 11, but different numbers.
If $m(t)=\frac{3}{8}t+2$, find $m(4.5)$ and $m(-2)$.
$m(4.5)$:
$m(t)=\frac{3}{8}t+2$ (Original function
$m(4.5)=\frac{3}{8}(4.5)+2$ (Substitution)
$m(4.5)=\frac{3}{8}(\frac{9}{2})+2$ (Changing into a fraction)
$m(4.5)=\frac{27}{16}+2=\frac{27+32}{16}=\frac{59}{16}$
$m(4.5)\approx3.688$
$m(-2)$:
$m(t)=\frac{3}{8}t+2$
$m(-2)=\frac{3}{8}*-2+2$
$m(-2)=-\frac{3}{4}+2$
$m(-2)=2-\frac{3}{4}=\frac{5}{4}=1.25$