Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 575: 35

Answer

Divergent

Work Step by Step

Let \[I=\int_{0}^{\frac{π}{2}}\tan^2\theta\:d\theta\] Since $\large\frac{π}{2}$ is point of infinite discontinuity of integrand $\tan^2\theta$ \[I=\int_{0}^{\frac{π}{2}}\tan^2\theta\:d\theta=\lim_{t\rightarrow\frac{π}{2} ^-}\int_{0}^{t}\tan^2\theta\:d\theta\] \[I=\lim_{t\rightarrow\frac{π}{2} ^-}\int_{0}^{t}\tan^2\theta\:d\theta\;\;\;\ldots (1)\] Let \[I_1=\int\tan^2 \theta d\theta\] \[I_1=\int(\sec^2 \theta-1) d\theta\] \[I_1=\tan \theta-\theta\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow\frac{π}{2} ^-}\left[\tan\theta-\theta\right]_{0}^{t}\] \[I=\lim_{t\rightarrow\frac{π}{2} ^-}\left[\tan t-t-0\right]\] $\;\;\;\;\;\;\;\;\;\;\;\;\; =$ does not exist Since limit on R.H.S. of (1) does not exist so $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.