Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.4 Integration of Rational Functions by Partial Fractions - 7.4 Exercises - Page 542: 63

Answer

$4\ln\left(\frac{2}{3}\right)+2$

Work Step by Step

If $t$ = $\tan(\frac{x}{2})$ then $\frac{x}{2}$ = $\tan^{-1}t$ $\cos\frac{x}{2}$ = $\frac{1}{\sqrt {1+t^2}}$ $\sin\frac{x}{2}$ = $\frac{t}{\sqrt {1+t^2}}$ $\cos x=\frac{1-t^2}{1+t^2}$ $\sin x=\frac{2t}{1+t^2}$ $dx=\frac{2}{1+t^2}dt$ $\int_0^{\frac{\pi}{2}}\frac{\sin 2x}{2+\cos x}dx$ = $\int_0^{\frac{\pi}{2}}\frac{2\sin x\cos x}{2+\cos x}dx$ = $2\int_0^1\frac{2\cdot\frac{2t}{1+t^2}\frac{1-t^2}{1+t^2}}{2+\frac{1-t^2}{1+t^2}}\cdot\frac{2}{1+t^2}dt$ = $\int_0^1\frac{8t(1-t^2)}{(t^2+3)(t^2+1)^2}dt$ Let $u$ = $t^2$ $du$ = $2tdt$ $\frac{1-t^2}{(t^2+3)(t^2+1)^2}$ = $\frac{1-u}{(u+3)(u+1)}$ = $\frac{A}{u+3}+\frac{B}{u+1}+\frac{C}{(u+1)^2}$ $1-u$ = $A(u+1)^2+B(u+3)(u+1)+C(u+3)$ $A$ = $1$, $B$ = $-1$, $C$ = $1$ So $\int_0^1\left[8t\frac{1-t^2}{(t^2+3)(t^2+1)^2}\right]dt$ = $\int_0^1\left[\frac{8t}{t^2+3}-\frac{8t}{t^2+1}+\frac{8t}{(t^2+1)^2}\right]dt$ = $\left[4\ln|t^2+3|-4\ln|t^2+1|-\frac{4}{t^2+1}\right]_0^1$ = $4\ln\left(\frac{2}{3}\right)+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.