Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.7 Hyperbolic Functions - 6.7 Exercises - Page 489: 16

Answer

\[\cosh 2x=\cosh^2 x+\sinh^2 x\]

Work Step by Step

To show that:-\[\cosh 2x=\cosh^2 x+\sinh^2 x\] We know that \[\sinh x=\frac{e^x-e^{-x}}{2}\;\;\;...(1)\] and \[\cosh x=\frac{e^x+e^{-x}}{2}\;\;\;...(2)\] Using (2) \[\cosh 2x=\frac{e^{2x}+e^{-2x}}{2}\;\;\;...(3)\] Consider \[I=\cosh^2 x+\sinh^2 x\] Using (1) and (2) \[I=\left(\frac{e^x+e^{-x}}{2}\right)^2+\left(\frac{e^x-e^{-x}}{2}\right)^2\] \[I=\left(\frac{e^{2x}+e^{-2x}+2}{4}\right)+\left(\frac{e^{2x}+e^{-2x}-2}{4}\right)\] \[\Rightarrow I=\frac{2(e^{2x}+e^{-2x})}{4}\] \[\Rightarrow I=\frac{e^{2x}+e^{-2x}}{2}\;\;\;...(4)\] Using (3) and (4) \[\cosh 2x=I\] Hence , \[\cosh 2x=\cosh^2 x+\sinh^2 x\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.