Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.6 Inverse Trigonometric Functions - 6.6 Exercises - Page 481: 38

Answer

$y'=\frac{2xy-1-x^4y^2}{2xy+2x^5y^3-x^2}$

Work Step by Step

By the implicit differentiating and the chain rule it follows: $$(x^{2}y)'(\arctan)'(x^{2}y)=1+2xyy'$$ $$(x^{2}y)'\frac{1}{1+(x^{2}y)^{2}}=1+2xyy'$$ $$(2xy+x^2y')\frac{1}{1+(x^{2}y)^{2}}=1+2xyy'$$ $$\frac{2xy}{1+(x^{2}y)^{2}}+\frac{x^2y'}{1+(x^{2}y)^{2}}=1+2xyy'$$ $$\frac{2xy}{1+(x^{2}y)^{2}}-1=2xyy'-\frac{x^2y'}{1+(x^{2}y)^{2}}$$ $$\frac{2xy}{1+(x^{2}y)^{2}}-1=y'\left(2xy-\frac{x^2}{1+(x^{2}y)^{2}}\right)$$ $$y'=\frac{\frac{2xy}{1+(x^{2}y)^{2}}-1}{(2xy-\frac{x^2}{1+(x^{2}y)^{2}})}$$ $$y'=\frac{2xy-1-x^4y^2}{2xy+2x^5y^3-x^2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.