Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.2 The Definite Integral - 4.2 Exercises - Page 319: 73

Answer

$\displaystyle \int_{0}^{1}x^{4}dx$

Work Step by Step

$\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \frac{i^{4}}{n^{4+1}}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \frac{i^{4}}{n^{1}\cdot n^{4}}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \frac{i^{4}}{n\cdot n^{4}}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \frac{i^{4}}{ n^{4}}\cdot \frac{1}{n}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \left(\frac{i}{ n}\right)^{4}\cdot \frac{1}{n}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \left(0+i\frac{1}{ n}\right)^{4}\cdot \frac{1}{n}$ $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} \left(0+i\frac{1-0}{ n}\right)^{4}\cdot \frac{1-0}{n}$ By the theorem $4$ it follows: $\lim\limits_{n \to \infty} \displaystyle \sum_{i=1}^{n} (0+i\frac{1-0}{ n})^{4}\cdot \frac{1-0}{n}$=$\displaystyle \int_{0}^{1}x^{4}dx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.