Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.5 The Chain Rule - 14.5 Exercises - Page 985: 53

Answer

$\dfrac{\partial ^2z }{\partial x^2}+\dfrac{\partial ^2z }{\partial y^2}=\dfrac{\partial^2z}{\partial r^2}+\dfrac{1}{r^2} \dfrac{\partial^2z}{\partial \theta^2}+\dfrac{1}{r} \dfrac{\partial z}{\partial r} $

Work Step by Step

Here, we have $\dfrac{\partial z }{\partial x}=( \dfrac{\partial z}{\partial r}) ( \dfrac{\partial r}{\partial x})+( \dfrac{\partial z}{\partial \theta}) ( \dfrac{\partial \theta}{\partial x})=\cos \theta \times (\dfrac{\partial z}{\partial r})- \dfrac{\sin \theta}{r} \times (\dfrac{\partial z}{\partial \theta}) $ $\dfrac{\partial z }{\partial y}=( \dfrac{\partial z}{\partial r}) \times ( \dfrac{\partial r}{\partial y})+( \dfrac{\partial z}{\partial \theta}) \times ( \dfrac{\partial \theta}{\partial y})=\sin \theta (\dfrac{\partial z}{\partial r})+ \dfrac{\cos \theta}{r} \times (\dfrac{\partial z}{\partial \theta}) $ Now, $\dfrac{\partial ^2z }{\partial x^2}=\cos^2 \theta \times (\dfrac{\partial^2z}{\partial r^2})- \dfrac{2 \sin \theta \cos \theta }{r} (\dfrac{\partial^2 z}{\partial r\partial \theta})+\dfrac{\sin^2 \theta}{r^2} \times (\dfrac{\partial^2 z}{\partial \theta^2})+\dfrac{\sin^2 \theta}{r} (\dfrac{\partial z}{\partial \theta})+\dfrac{2 \sin \theta \cos \theta }{r^2} \times (\dfrac{\partial z}{\partial \theta}) ...(a)$ and $\dfrac{\partial ^2z }{\partial y^2}=\sin^2 \theta \times (\dfrac{\partial^2z}{\partial r^2})+ \dfrac{2 \sin \theta \cos \theta }{r} (\dfrac{\partial^2 z}{\partial r\partial \theta})+\dfrac{\cos^2 \theta}{r^2} (\dfrac{\partial^2 z}{\partial \theta^2})+\dfrac{\cos^2 \theta}{r} (\dfrac{\partial z}{\partial r})-\dfrac{2 \sin \theta \cos \theta }{r^2} \times (\dfrac{\partial z}{\partial \theta}) ...(b)$ From equations (a) and (b), we have $\dfrac{\partial ^2z }{\partial x^2}+\dfrac{\partial ^2z }{\partial y^2}=\dfrac{\partial^2z}{\partial r^2}+\dfrac{1}{r^2} \dfrac{\partial^2z}{\partial \theta^2}+\dfrac{1}{r} \dfrac{\partial z}{\partial r} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.