Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 514: 90

Answer

The arc length is $$l=\ln|2+\sqrt{3}|.$$

Work Step by Step

The arc length is given by the formula $$l=\int_{x_1}^{x_2}\sqrt{1+(y')^2}dx.$$ In this problem $x_1=0$ and $x_2=\pi/3$ and $y=\ln(\cos x)$ so we have $$l=\int_0^{\pi/3}\sqrt{1+((\ln(\cos x))')^2}dx.$$ The derivative using chain rule is $$(\ln(\cos x))'=\frac{1}{\cos x}(\cos x)'=\frac{1}{\cos x}(-\sin x) = -\tan x.$$ This gives $$l=\int_0^{\pi/3}\sqrt{1+\tan^2x}dx =\int_0^{\pi/3}\sqrt{\frac{\cos^2x}{\cos^2 x}+\frac{\sin^2x}{\cos^2x}}dx=\int_0^{\pi/3}\sqrt{\frac{\sin^2x+\cos^2x}{\cos^2x}}dx.$$ We use $\sin^2x+\cos^2x=1$ to get $$l=\int_0^{\pi/3}\sqrt{\frac{1}{\cos^2x}}dx.$$ In the region of integration the cosine is positive so $\sqrt{\cos^2 x} = \cos x$ and we have $$l=\int_0^{\pi/3}\frac{1}{\cos x}dx=\int_0^{\pi/3}\sec xdx= \ln|\sec x+\tan x|\left.\right|_0^{\pi/3}.$$ Substituting the bounds of integration $$l=\ln|\sec(\pi/3)+\tan(\pi/3)|-\ln|\sec0+\tan0|=\\ \ln|2+\sqrt{3}|-\ln1=\ln|2+\sqrt3|$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.