Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 31

Answer

(1/2)ln|$x^{2}$+4|+C

Work Step by Step

-- Trigonometry substitution method: The denominator has the form ($x^{2}$+$a^{2}$), so let's replace x by a·tan θ. In this way, ($x^{2}$+$a^{2}$) is converted to ($a^{2}$$tan^{2} θ$+$a^{2}$), which is factored into $a^{2}$(1+$tan^{2} θ$). Then we apply the identity 1+$tan^{2} θ$=$sec^{2} θ$. In this problem, a=2, so we replace x by 2tan θ, and dx=2$sec^{2} θ$dθ $\int$$\frac{x}{x^{2}+4}$dx= $\int$$\frac{2tan θ}{(2tan θ)^{2}+4}$(2$sec^{2} θ$dθ) = $\int$$\frac{2tan θ}{4(1+tan^{2} θ)}$(2$sec^{2} θ$dθ) = $\int$$\frac{2tan θ}{4sec^{2} θ}$(2$sec^{2} θ$dθ) = $\int$tan θdθ =-ln|cosθ|+C Here, we convert θ back to x by using the trigonometry relationship shown by the image below. The expression= -ln |$\frac{2}{√ (x^{2}+4)}$|+C =ln$ |\frac{2}{ √(x^{2}+4)}|^{-1}$+C = ln|√($x^{2}$+4)|-ln2+C =(1/2)ln|$x^{2}$+4|+C' -- Substitution with u method: As u=$x^{2}$+4, du=2xdx So $\int$$\frac{x}{x^{2}+4}$dx= $\int$$\frac{1}{2u}$du=(1/2)ln|u|+C=(1/2)ln|$x^{2}$+4|+C
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.