Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.7 Implicit Differentiation - Exercises Set 2.7 - Page 167: 43

Answer

The families of the given curves intersect at $ x=\frac{2c^2k^2} {k(c^2+k^2)} $ and $y=\frac{2ck^2} {c^2+k^2} $ with slopes $\frac{k^2-c^2} {2ck} $ and $-\frac{2ck} {k^2-c^2} $. The slope are negative reciprocal of each other. Hence families of the curves are orthogonal trajectories of each other.

Work Step by Step

$ x^2+(y-c) ^2=c^2$ $x^2+y^2-2yc+c^2=c^2$ $x^2+y^2-2yc=0 $ .............. eq (1) $(x-k) ^2+y^2=k^2$ $x^2+k^2-2kx+y^2=k^2$ $x^2+y^2 -2kx=0$ .................. eq (2) Subtracting equation (2) from equation (1) $kx=cy$ Imply that $x=\frac{c}{k} y$ .............. eq (2') Putting equation (2') in equation (1) $ (\frac{c}{k} y) ^2+y^2-2yc=0$ $\frac{c^2} {k^2} y^2+y^2-2yc=0$ $ (\frac{c^2} {k^2} +1) y^2=2yc$ $(\frac{c^2+k^2} {k^2}) y^2=2yc$ $(\frac{c^2+k^2} {k^2}) y=2c$ $y=\frac{2ck^2} {c^2+k^2} $ ............. eq (3) Putting equation (3) in equation (2') $x=\frac{c} {k}\frac{2ck^2} {c^2+k^2} $ $ x=\frac{2c^2k^2} {k(c^2+k^2)} $ ................... eq (4) Differentiating equation (2) with respect to x $\frac{d(x^2+y^2-2kx)} {dx}=\frac{d(0)}{dx}$ $ \frac{dx^2} {dx}+\frac{d(y^2)}{dx}-\frac{d(2kx)}{dx}=0 $ $2x+\frac{d(y^2)} {dy}\frac{dy}{dx}-2k\frac{dx}{dx} =0$ $2x+2y\frac{dy}{dx}-2k=0$ $2y\frac{dy}{dx}=2k-2x=2(k-x) $ $\frac{dy}{dx}=\frac{k-x} {y}$ ................. eq (5) Putting equation (3) and equation (4) in equation (5) $\frac{dy}{dx}=\frac {k- \frac{2c^2k^2} {k(c^2+k^2)}} {\frac{2ck^2} {c^2+k^2}} $ $\frac{dy}{dx}=\frac {[k- \frac{2c^2k^2} {k(c^2+k^2)}]} {[\frac{2ck^2} {c^2+k^2}]} \frac{k(c^2+k^2)} {k(c^2+k^2)} $ $\frac{dy}{dx}=\frac {[k- \frac{2c^2k^2} {k(c^2+k^2)}]} {[\frac{2ck^2} {c^2+k^2}]} \frac{k(c^2+k^2)} {k(c^2+k^2)} =\frac{k^2(c^2+k^2)-2c^2k^2}{2ck^2k}$ $\frac{dy}{dx} =\frac{k^2(c^2+k^2)-2c^2k^2}{2ck^2k} =\frac{k^2c^2+k^4-2c^2k^2}{2ck^2k} =\frac{k^4-c^2k^2} {2ck^2 k} =\frac{k^2(k^2-c^2)}{2ck^2k} =\frac{k^2-c^2}{2ck}=m_1$............. eq (6) Where $m_1$ is the slope of the tangent to the curve Differentiating equation (1) with respect to x $\frac{d(x^2+y^2-2yc)}{dx}=\frac {d (0)} {dx}$ $ \frac{d(x^2)} {dx}+\frac{d(y^2)} {dy}\frac{dy}{dx}-2c\frac{dy}{dx}=0$ $2x+2y\frac{dy}{dx}-2c\frac{dy}{dx}=0$ $2(y-c)\frac{dy}{dx}=-2x$ $\frac{dy}{dx}=-\frac{x}{y-c} = $ ................ eq (7) Putting equation (3) and equation (4) in equation (7) $\frac{dy}{dx}=-\frac{\frac{2c^2k^2} {k(c^2+k^2)}} {(\frac{2ck^2} {c^2+k^2}) -c} $ $\frac{dy}{dx}=-[\frac{\frac{2c^2k^2} {k(c^2+k^2)}} {(\frac{2ck^2} {c^2+k^2}) -c}] \frac{k(c^2+k^2)}{k(c^2+k^2)} =-\frac{2c^2k^2}{2ck^3-ck(c^2+k^2)} =-\frac{2ck}{k^2-c^2}=m_2$ .............. eq (8) Where $m_2$ is the slope of the tangent to the curve Multiplying equation (6) and equation (8) Now $m_1m_2=\frac{k^2-c^2}{2ck}(-\frac{2ck}{k^2-c^2}) =-1$ Since tangents lines are mutually perpendicular at their point of intersection, families of the given curves are orthogonal trajectories of one another
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.