Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 5 - Eigenvalues and Eigenvectors - 5.5 Exercises - Page 302: 2

Answer

Eigenvalues are $3+i$ and $3-i$ and the basis vectors for corresponding eigenspaces are $\begin{bmatrix} 2+i & 1 \end{bmatrix}$ and $\begin{bmatrix} 2-i & 1 \end{bmatrix}$ repectively.

Work Step by Step

Let the given matrix be $A$. \[A = \begin{bmatrix}5 & -5 \\ 1 & 1 \end{bmatrix}\] The characteristic equation for $A$ is $|A-\lambda I| = 0$. Where $\lambda$ is the eigenvalue. Substituting value of $A$ in the characteristic equation gives \[\left| \begin{bmatrix}5 & -5 \\ 1 & 1 \end{bmatrix}- \lambda \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} \right| = 0\] \[\implies \left| \begin{bmatrix}5-\lambda & -5 \\ 1 & 1-\lambda \end{bmatrix} \right| = 0\] \[\implies (5-\lambda)(1-\lambda)+5 = 0\] \[\implies \lambda^2-6\lambda+10 = 0\] Solving for $\lambda$ gives \[\lambda = \frac{6\pm\sqrt{6^2-40}}{2}\] \[\implies \lambda = 3\pm i\] In what follows, we find the eigen vector for each eigenvalue of $A$. Eigenvector corresponding to $3+i$: The Eigenvector is the solution of the following equation. \[(A-\lambda I)X = 0\] where $\lambda = 3+i$ and $X = \begin{bmatrix}x_{1} & x_{2}\end{bmatrix}$. Substituting for $\lambda$ and $A$ gives \[\begin{bmatrix} 2-i & -5 \\ 1 & -2-i\end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2}\end{bmatrix} = 0\] Which implies \[ (2-i)x_{1}-5x_{2} = 0\] and \[x_{1}-(2+i)x_{2} = 0\] \[\implies x_{1} = (2+i)x_{2}\] Therefore, we have \[\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2+i \\ 1 \end{bmatrix} x_{2} \] Therefore, $\begin{bmatrix} 2+i & 1 \end{bmatrix}$ forms the basis for eigenspace. Eigenvector corresponding to $3-i$: The Eigenvector is the solution of the following equation. \[(A-\lambda I)X = 0\] where $\lambda = 3-i$ and $X = \begin{bmatrix}x_{1} & x_{2}\end{bmatrix}$. Substituting for $\lambda$ and $A$ gives \[\begin{bmatrix} 2+i & -5 \\ 1 & -2+i\end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2}\end{bmatrix} = 0\] Which implies \[ (2+i)x_{1}-5x_{2} = 0\] and \[x_{1}+(-2+i)x_{2} = 0\] \[\implies x_{1} = (2-i)x_{2}\] Therefore, we have \[\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2-i \\ 1 \end{bmatrix} x_{2} \] Therefore, $\begin{bmatrix} 2-i & 1 \end{bmatrix}$ forms the basis for eigenspace.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.