Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 5 - Eigenvalues and Eigenvectors - 5.1 Exercises - Page 274: 13

Answer

$\lambda=1$: $\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$, $\lambda=2$: $\begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix}$, $\lambda=3$: $\begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$

Work Step by Step

We can find the basis for the eigenspace by finding the basis for the null space of the matrices $(A-I)x=0$, $(A-2I)x=0$, and $(A-3I)x=0$. $(A-I)=\begin{bmatrix} 3&0&1\\ -2&0&0\\ -2&0&0 \end{bmatrix}$~$\begin{bmatrix} 1&0&0\\ 0&0&1\\ 0&0&0 \end{bmatrix}$ For, $\lambda=1$: $\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$ $(A-2I)=\begin{bmatrix} 2&0&1\\ -2&-1&0\\ -2&0&-1 \end{bmatrix}$~$\begin{bmatrix} 2&1&0\\ 0&-1&1\\ 0&0&0 \end{bmatrix}$ For, $\lambda=2$: $\begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix}$ $(A-3I)=\begin{bmatrix} 1&0&1\\ -2&-2&0\\ -2&0&-2 \end{bmatrix}$~$\begin{bmatrix} 1&0&1\\ 0&1&-1\\ 0&0&0 \end{bmatrix}$ For, $\lambda=3$: $\begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.