Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 5 - Eigenvalues and Eigenvectors - 5.1 Exercises - Page 273: 8

Answer

$λ=3$ is an eigenvalue of the given matrix $\mathbf{v} = \left[\begin{array}{r} 3\\2\\1 \end{array}\right] $

Work Step by Step

Given $$\left[\begin{array}{rrr} 1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1 \end{array}\right] $$ Since \begin{align*} |A-\lambda I |&= 0\\ \left|\begin{array}{rrr} 1-\lambda & 2 & 2 \\ 3 & -2-\lambda & 1 \\ 0 & 1 & 1-\lambda \end{array}\right|&=0\\ \left(1-λ\right)\left(λ^2+λ-3\right)-2\cdot \:3\left(-λ+1\right)+2\cdot \:3&=0\\ -λ^3+10λ-3&=0 \end{align*} Since $ λ=3$ satisfies the characteristic equation , then $λ=3$ is an eigenvalue of the given matrix , to find the corresponding eigenvector \begin{align*} (A-\lambda I) \mathbf{v}&=0\\ \left[\begin{array}{rrr} -2 & 2 & 2 \\ 3 & -5 & 1 \\ 0 & 1 & -2 \end{array}\right]\left[\begin{array}{r} x_1\\ x_2\\ x_3 \end{array}\right]=\left[\begin{array}{r} 0\\0\\0 \end{array}\right] \end{align*} Then $$\left[\begin{array}{rrr} -2 & 2 & 2 \\ 3 & -5 & 1 \\ 0 & 1 & -2 \end{array}\right]\to \left[\begin{array}{rrr} -1 & 1 & 1 \\ 3 & -5 & 1 \\ 0 & 1 & -2 \end{array}\right]\to \left[\begin{array}{rrr} -1 & 1 & 1 \\ 0& -2 &4 \\ 0 & 1 & -2 \end{array}\right] \to \left[\begin{array}{rrr} -1 & 1 & 1 \\ 0& -2 &4 \\ 0 & 0 & 0 \end{array}\right]$$ Then $ x_3= t,\ \ \ x_2= 2t,\ \ \ x_1= 3t$, hence $\mathbf{v} = \left[\begin{array}{r} 3\\2\\1 \end{array}\right] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.