Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.3 Geometric Sequences and Series - 14.3 Exercise Set - Page 911: 7

Answer

The series $4+20+100+500+2500+12,500$ is a geometric series.

Work Step by Step

A series having the same common ratio throughout the series is a geometric series. A series having the same common difference throughout the series is an arithmetic series. Consider the provided series, $4+20+100+500+2500+12,500$ The common ratio for the series is given by, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Find the common ratio, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Substitute $n=1$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Thus, $\begin{align} & r=\frac{{{a}_{1+1}}}{{{a}_{1}}} \\ & =\frac{{{a}_{2}}}{{{a}_{1}}} \\ & =\frac{20}{4} \\ & =5 \end{align}$ Find the common ratio, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Substitute $n=2$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Thus, $\begin{align} & r=\frac{{{a}_{2+1}}}{{{a}_{2}}} \\ & =\frac{a3}{{{a}_{2}}} \\ & =\frac{100}{20} \\ & =5 \end{align}$ Find the common ratio, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Substitute $n=3$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Thus, $\begin{align} & r=\frac{{{a}_{3+1}}}{{{a}_{3}}} \\ & =\frac{{{a}_{4}}}{{{a}_{3}}} \\ & =\frac{500}{100} \\ & =5 \end{align}$ Find the common ratio, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Substitute $n=4$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Thus, $\begin{align} & r=\frac{{{a}_{4+1}}}{{{a}_{4}}} \\ & =\frac{{{a}_{5}}}{{{a}_{4}}} \\ & =\frac{2500}{500} \\ & =5 \end{align}$ Find the common ratio, $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Substitute $n=5$ in the common ratio $r=\frac{{{a}_{n+1}}}{{{a}_{n}}}$ Thus, $\begin{align} & r=\frac{{{a}_{5+1}}}{{{a}_{5}}} \\ & =\frac{{{a}_{6}}}{{{a}_{5}}} \\ & =\frac{12500}{2500} \\ & =5 \end{align}$ So, this is a geometric series. Consider the provided series, $4+20+100+500+2500+12,500$ The common difference for the series is given by, ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$ Find the common difference, ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$ Substitute $n=1$ in the common ratio ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$ Therefore, $\begin{align} & {{d}_{1}}={{a}_{1+1}}-{{a}_{1}} \\ & ={{a}_{2}}-{{a}_{1}} \\ & =20-4 \\ & =16 \end{align}$ Find the common difference, ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$ Substitute $n=2$ in the common ratio ${{d}_{n}}={{a}_{n+1}}-{{a}_{n}}$ Thus, $\begin{align} & {{d}_{2}}={{a}_{2+1}}-{{a}_{1}} \\ & ={{a}_{3}}-{{a}_{1}} \\ & =100-20 \\ & =80 \end{align}$ Hence, ${{d}_{1}}\ne {{d}_{2}}$ So, this is not an arithmetic series. Thus, The series $4+20+100+500+2500+12,500$ is a geometric series.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.