Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.8 - Proof Methods and Strategy - Exercises - Page 109: 35

Answer

As given below

Work Step by Step

Let us assume two rational numbers are $x$ and $y$ ($x\lt y$) $x=\frac{a}{m}$ $y=\frac{b}{m}$ ($a, b$ and $m$ are integers, $m \gt 0$ ) Because $x\lt y$ so $\frac{a}{m} \lt \frac{b}{m}$ and $m \gt 0$ so $a \lt b$ Assume an irrational number iss $z=\frac{a+b}{2m}$ We have $a \lt b$ $ \rightarrow a + a \lt a+b$ $2a \lt a+ b $ but $m \gt 0$ $\rightarrow 2m \gt 0 $ $\rightarrow \frac{2a}{2m}\lt \frac{a+b}{2m}$ $\rightarrow \frac{a}{m} \lt \frac{a+b}{2m}$ $\rightarrow x \lt z$ (1) $a \lt b$ $\rightarrow a+ b \lt b + b$ $\rightarrow a + b \lt 2b$ but $m \gt 0$ $\rightarrow 2m \gt 0 $ $\rightarrow \frac{a+b}{2m} \lt \frac{2b}{2m}$ $\rightarrow \frac{a+b}{2m} \lt \frac{b}{m}$ $\rightarrow z \lt y$ (2) From $(1)$ and $(2) \rightarrow x\lt z \lt y$ We can conclude that between every two rational numbers there is an irrational number.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.