General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 15 - Priciples of Chemical Equilibrium - Exercises - Experimental Determination of Equilibrium Constants - Page 689: 18

Answer

$$K_p= 1.77$$

Work Step by Step

1. Determine the concentrations in mol/L: $ H_2 $ : ( 1.008 $\times$ 2 )= 2.016 g/mol - Calculate the amount of moles: $$ 1.00 \space g \times \frac{1 \space mol}{ 2.016 \space g} = 0.496 \space mol$$ - Calculate the molarity: $$ \frac{ 0.496 \space mol}{ 0.500 \space L} = 0.992 \space M $$ $ H_2S $ : ( 1.008 $\times$ 2 )+ ( 32.07 $\times$ 1 )= 34.09 g/mol - Calculate the amount of moles: $$ 1.06 \space g \times \frac{1 \space mol}{ 34.09 \space g} = 0.0311 \space mol$$ - Calculate the molarity: $$ \frac{ 0.0311 \space mol}{ 0.500 \space L} = 0.0622 \space M $$ - For $S_2$ at equilibrium: $$ \frac{ 8.00 \times 10^{-6} \space mol}{ 0.500 \space L} = 1.60 \times 10^{-5} \space M $$ 2. At equilibrium, these are the concentrations of each compound: $ [ H_2 ] = 0.992 \space M - 2x$ $ [ S_2 ] = 0 \space M - x$ $ [ H_2S ] = 0.0622 \space M + 2x$ 3. Using the concentration of $ S_2 $ at equilibrium, find x: $ 0 - x = 1.60 \times 10^{-5} $ $x = -1.60 \times 10^{-5} $ $ [ H_2 ] = 0.992 \space M - 2*( -1.60 \times 10^{-5} ) = 0.992 $ $ [ S_2 ] = 0 \space M - (-1.60 \times 10^{-5}) =1.60 \times 10^{-5} $ $ [ H_2S ] = 0.0622 \space M + 2*( -1.60 \times 10^{-5} )= 0.0622 $ 4. Write the expression and calculate $K_c$ $$K_c = \frac{[H_2S]^2}{[H_2]^2[S_2]} = \frac{(0.0622)^2}{(0.992)^2(1.60 \times 10^{-5})} =2.46 \times 10^2$$ 5. Calculate $K_p$ $$K_p = K_c(RT)^{2 - 3} = (2.46 \times 10^2)(0.08314 \times 1670)^{-1} = 1.77$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.