#### Answer

The angles are $A=37^{\circ}50', B=48^{\circ}50'$, and $C=93^{\circ}20'$

#### Work Step by Step

We can use the law of sines to find the angle $A$:
$\frac{b}{sin~B} = \frac{a}{sin~A}$
$sin~A = \frac{a~sin~B}{b}$
$sin~A = \frac{(3850~in)~sin~(48^{\circ}50')}{4730~in}$
$A = arcsin(0.6127)$
$A = 37^{\circ}50'$
We can find angle $C$:
$A+B+C = 180^{\circ}$
$C = 180^{\circ}-A-B$
$C = 180^{\circ}-37^{\circ}50'-48^{\circ}50'$
$C = 93^{\circ}20'$
The angles are $A=37^{\circ}50', B=48^{\circ}50'$, and $C=93^{\circ}20'$